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An estimation of the local Nusselt number distribution for a flat and a ribbed surface from transient liquid
crystal images is presented. Liquid crystal thermography generates color images of the time-varying surface
temperature field, when an initially heated surface is subjected to cooling in forced flow. The inverse technique
compares the approximate numerical solution with the transient experimental temperature distribution, and
enforces the applicable physical laws in such a way that a globally correct Nusselt number distribution is
predicted. The related optimization problem has been solved by a conjugate gradient method, with a stabiliza-
tion scheme based on additional experimental data. The partial differential equations arising at the intermedi-
ate stages have been solved numerically using the finite difference technique. Predictions of the local Nusselt
number have been compared with the full numerical solution based on unsteady incompressible laminar
flow, as well as the one-dimensional semi-infinite solid approximation applied to experimental data.
Reynolds numbers considered in the study are 160 and 260, based on the rib height. Results show that the
inverse technique is capable of resolving sharp as well as gradual changes in the heat transfer rates for the
flat plate and the rib geometries. The peak in the Nusselt number distribution for flow past a rib is seen to
fall at a location where the flow reattaches with the flat surface. The inverse technique is robust with respect
to signal length, and within limits it is insensitive to noise in the experimental data.
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1 INTRODUCTION

Convective heat transfer coefficient distribution over a flat surface with and without
a surface-mounted rib has been studied in the present work. The rib geometry is
encountered in many applications, for example as a vortex generator for cooling of
gas turbine blades. Flow separates at the corners of the rib, generating vortices over
the surface. The vortex that is formed beyond the rib improves mixing of the warm
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fluid near the solid surface with the cooler free stream, and is the source of heat transfer
enhancement. Specifically, it creates a local Nusselt number peak at the reattachment
point. The present work is concerned with determining the distribution of local
Nusselt number over the solid surface. Liquid crystal thermography (LCT) has been
employed under transient cooling conditions of the wall. The LCT images form the
input data to an inverse technique, from which the local Nusselt number distribution
is calculated. Results have been reported in the present work for a lower range of
Reynolds numbers, for which the vortices are steady. The overall methodology is
however robust with respect to the form of thermal boundary conditions and is
independent of Reynolds number.

The importance of inverse techniques is well-discussed in the literature in the context
of heat conduction [1,2]. When heat transfer is by mechanisms of conduction, as well
as convection, the methodology is not as well-established. Fluid flow introduces
new physics such as boundary-layers and vortex formation, that in turn localizes the
region where sensitive information is contained. Huang and Ozisik [3] presented a
solution to the parabolic inverse forced convection problem using conjugate gradient
method to estimate the surface heat flux in a parallel plate channel. Huang and
Chen [4] and Colaco and Orlande [5] used the conjugate gradient method to solve
two-and three-dimensional inverse convection problems, respectively. The geometries
considered were a flat surface and an irregularly shaped channel. These references
utilized numerically simulated data, rather than from experimental measurements.
Specifically, the potential of an inverse technique to extract useful information from
experimental data has not been largely reported.

As an experimental technique, LCT is a powerful tool for measuring the surface
temperature distribution with subsequent determination of surface Nusselt
number. Various aspects of liquid crystal thermography have been addressed in the
literature [6–10]. Lin and Wang [11] presented a method of calculating the local
Nusselt number by an inverse conduction technique using LCT images as well as
temperature data within the solid medium. These authors have also shown that
a one-dimensional model overestimates the local Nusselt number, with respect to the
two-dimensional model. A semi-infinite solid solution for determining the local Nusselt
number has been described in [12,13].

A two-dimensional inverse convection algorithm has been presented in this work for
flow over heated surfaces. A flat plate and one with a surface-mounted rib have been
considered. The flow and the thermal fields have been taken to be two-dimensional,
with the wall being initially isothermal. The Reynolds numbers realized in the experi-
ments make the flow laminar and steady over the physical domain. The experimental
data in the form of temperature history of the surface has been collected using the
LCT technique. A collection of LCT images serve to stabilize the calculations against
noise in the experimental data, and the intrinsic ill-posedness of the inverse algorithm.
The objective of the present work is to determine the steady state distribution of Nusselt
number from a slow transient cooling experiment.

2 APPARATUS AND INSTRUMENTATION

The sketch of the experimental setup along with the instrumentation used in the present
work is shown in Fig. 1. The experimental facility comprises a flow circuit, heating
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section, traversing mechanism, liquid crystal sheets, and an image processing system.
Experiments have been performed in the open-loop wind tunnel in which air is
drawn into the test section through a honeycomb section, five anti-turbulence screens
and a 3 : 1 contraction cone. The test section is followed by a flow straightener to
minimize the influence of blower noise in the test section. The speed of the blower
is controlled by a speed controller (Victor G1000 Kirloskar Electric). The settling
chamber is 1950mm long and has a rectangular cross-section of 500mm by 1000mm.
The test section over which measurements have been carried out is 800mm long with
cross section of 298mm� 160mm in the vertical plane. The entire test section is
made of a 12mm thick perspex sheet. The free-stream turbulence level at the entrance
of the test cell was measured to be 0.5% for the velocity range used in this work.
The boundary-layer thickness at the inflow plane was measured to be 3mm. The
measured inflow velocity profile was used as a boundary condition in the numerical
calculations.

The test surface over which the heat transfer rates are determined is a single
aluminum plate (680mm� 298mm� 3mm) heated by stainless steel foils of dimension
680mm� 47mm� 0.045mm. The foils are connected in series and glued uniformly
between the aluminum plate and a 25-mm thick bakelite sheet. A DC power source
supplies power to the stainless steel foil heaters. To minimize the conductive heat
losses, the lower surface of the bakelite sheet is insulated using a 13-mm thick plate
of bakelite with a 2mm air gap in between. The heat transfer surface is instrumented
with 13 calibrated thermocouples, mounted onto the bakelite plate at several
locations with thermally conducting epoxy (101, Omega). For measurements with

FIGURE 1 Schematic drawing of flow arrangement, coordinate system and instrumentation.
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a surface-mounted rib, an aluminum rod of uniform cross section (6.5mm� 6.5mm) is
firmly glued over the test surface. The rib was not seen to influence the velocity and
temperature profiles at the inlet plane.

All fluid velocity measurements have been carried out with a single-wire hotwire
anemometer (DANTEC, 56C17). The hot-wire calibration has been performed in the
test cell itself due to its high degree of uniformity and low fluctuations. Temperature
profiles in the flow field have been measured by the hotwire probe working as resistance
thermometer. The resistance of the wire is determined by a 5.5-digit multimeter (HP
3457A). Thermocouples are connected to a data acquisition card (NI 4351), with
room temperature compensation against a precalibrated thermistor mounted on
the terminal block itself. The hotwire probe is positioned by a computer-controlled
traversing mechanism that has an accuracy of � 0.1mm.

The temperature variation over the test surface has been measured by liquid crystal
thermography (LCT). The heated surface is coated with the thermochromic liquid
crystal sheet (Hallcrest R35C5W), whose activation of the red color begins at 35�C,
the bandwidth being 5�C. The image acquisition and processing system used in the
present investigation consists of a color CCD video camera (Sony XC-003P), a 24-bit
true color image processing board (Imaging Technology), and a high speed PC
(HCL). The camera resolution is 768� 574 pixels over the selected surface. The
image-processing board is programmed for color analysis and stores the calculated
RGB value to integers ranging from 0 to 255. Further, it provides hue, saturation
and intensity (HSI) values directly using base level C-language programs.

For calibration of the liquid crystal sheet, the color image of the area around the
thermocouple mounted on the test surface is recorded and the corresponding HSI
values are calculated. For the range of temperatures studied, hue was found to
have a monotonic variation with temperature. In addition, the variance in the scatter
of hue with temperature was a minimum, in comparison to saturation and intensity.
Therefore, hue was identified as the most suitable quantity for representing
the relationship between color and temperature. The type of illumination, source
to model distance, illumination angle, camera conditions, such as circuit gain, filter
adjustment, aperture and optical adjustments influence this relationship, and are
locked during calibration as well as the final image acquisition. A calibration
curve relating hue to temperature is shown in Fig. 2. A typical surface temperature
variation from the liquid crystal images of flow past a rib using the calibration curve
(shown in Fig. 2) has been presented in Fig. 3 on a grey scale. In the reattachment
region, (darker region) the temperature is a minimum due to the higher heat transfer
coefficient.

Scatter in the experimental data is associated with measuring temperature via the
A/D card, fluctuations in the supply voltage, positional accuracy in locating the probe,
scatter in the calibration data, and inadequate compensation for room temperature,
drift in electronics, non-uniformity in the illumination on the liquid crystals, and the
pixel size resolution of the camera. Careful control over each of these factors showed
that the LCT images were practically unchanged for a Reynolds number perturbation
upto � 10%. A sensitivity study of the effect of scatter in the LCT data on the predicted
Nusselt number distribution has been reported in this work.

The thermophysical properties of air used in the present study are listed in
Table I.
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FIGURE 2 Calibration curve relating hue and temperature for LCT in the present experiment.

FIGURE 3 Normalized grey scale ribbed surface temperature from the transient liquid crystal image after
90 s at Re¼ 260.
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3 EXPERIMENTAL PROCEDURE

A transient experiment to estimate the local Nusselt number distribution is performed
as follows. With the flow turned off, the test section, namely the aluminium plate
is electrically heated from below. In view of the high thermal conductivity of
aluminium, its surface achieves a practically constant temperature. The heating is
stopped when the maximum temperature between any pair of points over the test
surface is within � 0.2�C, with respect to the mean value. This check is enforced
via the surface-mounted thermocouples, as well as by examining the color variation
of the LCT sheet. In a typical experiment, the wall flux is around 1000W/m2 and
heating takes around 4min. During this period, the penetration of the thermal
front in the bakelite sheet is negligible. The test surface is then subjected to cooling
by turning the heater off, and the fan blower on. It takes about 10 s for the flow
to be established in the wind tunnel, and can be monitored by the static pressure
taps in the flow direction. The rate of cooling of the test section is subsequently
recorded by monitoring the change in the color patterns of the liquid crystal sheets
as a function of time. Liquid crystal images have been recorded for all experiments
for a period of 30 s. An interval of 2 s is allowed to elapse between two successive
images. The total time taken for the LCT sheet to pass through its entire bandwidth
is of the order of a few minutes. The LCT images are converted to hue and then
a temperature distribution by employing the calibration curve. At the Reynolds
numbers studied, the temperature distribution in the spanwise direction with respect
to flow was found to be practically uniform. The temperature data was averaged
in this direction before being used as input to the unsteady two-dimensional inverse
technique. Spanwise averaging also helped reduce noise in the data supplied to the
inverse algorithm.

4 INVERSE CONVECTION TECHNIQUE

The application of the inverse technique for the determination of the local Nusselt
number distribution from the sequence of the LCT images is discussed in the present
section. A flat surface and another carrying a rib have been studied. The inverse tech-
nique is developed around an optimization algorithm. Among the family of optimiza-
tion algorithms available, the one based on conjugate gradients has been utilized in
the present work. The conjugate gradient method uses the steepest descent technique
coupled with orthonormalization of the present and the previous search directions.
When applied to the inverse procedure, the conjugate gradient method uses
a perturbation principle and generates a sequence of direct, adjoint and sensitivity
problems. In every iteration, the three problems are solved once. Iterations continue
till the predicted Nusselt number distribution attains convergence.

TABLE I Thermophysical properties of air at 30 and 40�C

�C �, kg/m3 �, Pa s Cp, kJ/kgK kf , W/mK

30 1.165 18.64� 10�6 1.005 26.37� 10�3

40 1.127 19.11� 10�6 1.005 27.09� 10�3
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Though the algorithm presented in this section is quite general, specific results have
been presented with the following approximations.

1. The velocity field is steady and two dimensional.
2. The temperature field is unsteady and two dimensional, i.e. the surface temperature

varies with the streamwise coordinate alone.
3. Over the brief duration of the experiment, the local Nusselt number distribution is

time-invariant.
4. As the rib-to-channel height ratio (¼ 1 : 24) is small, the full channel simulation is

replaced by an external flow configuration, wherein the free-slip condition is applied
for velocity at a distance of y¼ d. This step reduces the number of nodes involved in
the computation.

5. The dominant mechanism of heat transfer in the fluid is forced convection; thus
thermal buoyancy forces can be neglected and the momentum and energy equations
can be decoupled.

The two-dimensional steady velocity field is computed by solving continuity and
Navier–Stokes equations through the stream function–vorticity approach. The inflow
velocity profiles have been taken from the experimental measurements, 10 rib-heights
upstream of the rib.

The direct problem for temperature requires the solution of the following energy
equation:

@�

@t
þ
@ðu�Þ

@x
þ
@ðv�Þ

@y
¼

1

Pe

@2�

@x2
þ
@2�

@y2

� �
ð1Þ

The initial and boundary conditions are:

t ¼ 0, � ¼ 0 ð y >0Þ

t ¼ 0, � ¼ 1 ð y ¼ 0Þ ð2Þ

x ¼ 0, � ¼ 0 ð3Þ

x ¼ l,
@�

@x
¼ 0 ð4Þ

y ¼ 0,
@�

@y
¼ ��Nu ð5Þ

y ¼ d, � ¼ 0 ð6Þ

In Eq. (6), d is the location where the free-slip condition in velocity is applied (see
assumption 4 above). A typical value of d used in the computations is 4 (with respect
to the rib height).

The wall boundary condition for temperature for a transient experiment is written
in such a way that the Nusselt number distribution is brought into prominence. The
wall temperature is initially unity, and provides a non-trivial condition for the system
of Eqs. (1)–(6). For a guessed Nusselt number variation over the surface, the wall
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temperature at all subsequent times can be determined as a part of the solution of the
direct problem.

Heat transfer within the rib is by conduction. It is coupled to the energy equation in
the fluid phase as a conjugate problem in terms of the following set of equations:
For

l1 � x � l1 þ lr1 and y � dr1

@�

@t
¼

1

Pe

�s
�f

@2�

@x2
þ
@2�

@y2

� �
ð7Þ

For

x ¼ l1 and l1 þ lr1, and y � dr1, ks
@�

@x

����
solid

¼ kf
@�

@x

����
fluid

ð8Þ

For

l1 � x � l1 þ lr1 and y ¼ dr1, ks
@�

@y

����
solid

¼ kf
@�

@y

����
fluid

ð9Þ

Symbols appearing in the boundary conditions above are explained in the
nomenclature. The treatment given above allows the rib material to have a finite
thermal conductivity and hence temperature gradients within the rib.

4.1 Inverse Problem

With �(x, y, t) determined from the direct problem, the plate temperature distribution is
obtained for a guessed wall Nusselt number variation. The inverse procedure is
developed by comparing this instantaneous temperature distribution with the
appropriate LCT image of the experiment.

Following the earlier work of [3] and [4], the global statement of the inverse problem
has been posed in the form of minimization of the following functional:

J ¼

Z tf

0

Z d

0

Z l

0

ð� � YÞ2�ð yÞ dx dy dt ð10Þ

where � and Y are the computed and measured temperatures. The symbol tf refers to
the duration of the experiment. The use of the Dirac-delta function �(y) forces the
evaluation of the above integral at the wall, where all the experimental data is available
in the present work. The form of the functional can be generalized to experiments where
additional data is available at selected planes away from the wall.
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4.2 Adjoint Equations

The minimization of the functional in the inverse technique is accomplished jointly with
the constraint of the physical law that governs unsteady forced convection heat
transfer. The constraint is introduced in the formulation via the principle of
Lagrange multipliers. Introducing the Lagrange multiplier function �, the optimization
functional can be rewritten as:

J ¼

Z tf

0

Z d

0

Z l

0

ð� � YÞ2�ðyÞ dx dy dt

þ

Z tf

0

Z d

0

Z l

0

�
1

Pe

@2�

@x2
þ
@2�

@y2

� �
�
@ðu�Þ

@x
�
@ðv�Þ

@y
�
@�

@t

� �
dx dy dt ð11Þ

In Eq. (11), setting �þ�� in place of � and Jþ�J in place of J, subtracting the
original from the resulting equation and neglecting the terms involving squares of
��, the perturbation �J can be derived as:

�J ¼ 2

Z tf

0

Z d

0

Z l

0

��ð� � Y Þ�ð yÞ dx dy dt

þ

Z tf

0

Z d

0

Z l

0

�

Pe

@2ð��Þ

@x2
þ
@2ð��Þ

@y2

� �
dx dy dt

�

Z tf

0

Z d

0

Z l

0

�
@fuð��Þg

@x
þ
@fvð��Þg

@y
þ
@ð��Þ

@t

� �
dx dy dt ð12Þ

Using appropriate boundary conditions (Eqs. 3–9), and letting �J! 0, Eq. (12) can be
simplified to yield the following adjoint equation and the boundary conditions:

1

Pe

@2�

@x2
þ
@2�

@y2

� �
þ
@ðu�Þ

@x
þ
@ðv�Þ

@y
þ
@�

@t
¼ 0 ð13Þ

t ¼ tf, � ¼ 0 ð y � 0Þ ð14Þ

x ¼ 0, � ¼ 0 ð15Þ

x ¼ l,
@�

@x
þ u�Pe ¼ 0 ð16Þ

y ¼ 0,
@�

@y
þ �Nuþ 2Peð� � Y Þ ¼ 0 ð17Þ

y ¼ d, � ¼ 0 ð18Þ

The related problem of heat conduction in the rib reduces to:
For

l1 � x � l1 þ lr1 and y � dr1

@�

@t
¼ �

1

Pe

�s
�f

@2�

@x2
þ
@2�

@y2

� �
ð19Þ
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For

x ¼ l1 and l1 þ lr1, and y � dr1, ks
@�

@x

����
solid

¼ kf
@�

@x

����
fluid

ð20Þ

For

l1 � x � l1 þ lr1 and y ¼ dr1, ks
@�

@y

����
solid

¼ kf
@�

@y

����
fluid

ð21Þ

Combining the adjoint equation (13) with Eq. (12) leads to

�J ¼
1

Pe

Z tf

0

Z l

0

��ð�NuÞ½ �y¼ 0 dx dt ð22Þ

Using the definition of a gradient

�J ¼

Z tf

0

Z l

0

J0ð�NuÞ dx dt ð23Þ

we have the following expression for the gradient of the functional:

J0ð�NuÞ ¼ lim
�Nu!0

�J

�Nu
¼

Z tf

0

��

Pe

� �
y¼0

dt ð24Þ

The gradient values are required in the conjugate gradient algorithm described
in Section 4.6.

4.3 Sensitivity Problem

The sensitivity problem refers to the determination of the domain of dependence
of the temperature field on the unknown local Nusselt numbers. It arises naturally in
the conjugate gradient algorithm, during the calculation of the step size for corrections
in the guessed Nusselt number. To formulate the sensitivity problem, a perturbation of
�� is given to � in Eqs. (1)–(9). Subtracting the original from the perturbed
equations, the following sensitivity problem and boundary conditions are obtained:

@ð��Þ

@t
þ
@ðu��Þ

@x
þ
@ðv��Þ

@y
¼

1

Pe

@2ð��Þ

@x2
þ
@2ð��Þ

@y2

� �
ð25Þ

t ¼ 0, �� ¼ 0 ðy � 0Þ ð26Þ

x ¼ 0, �� ¼ 0 ð27Þ

x ¼ l,
@ð��Þ

@x
¼ 0 ð28Þ
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y ¼ 0,
@ð��Þ

@y
¼ ���Nu�Nu�� ð29Þ

y ¼ d, �� ¼ 0 ð30Þ

The corresponding heat conduction equation and boundary conditions in the rib can
be derived as:
For

l1 � x � l1 þ lr1 and y � dr1

@ð��Þ

@t
¼

1

Pe

�s
�f

@2ð��Þ

@x2
þ
@2ð��Þ

@y2

� �
ð31Þ

For

x ¼ l1 and l1 þ lr1, and y � dr1, ks
@ð��Þ

@x

����
solid

¼ kf
@ð��Þ

@x

����
fluid

ð32Þ

For

l1 � x � l1 þ lr1 and y ¼ dr1, ks
@ð��Þ

@y

����
solid

¼ kf
@ð��Þ

@y

����
fluid

ð33Þ

4.4 Determination of Step Size

The value of the functional is Jk at the kth iteration and becomes Jkþ 1 after
temperatures are updated through a step size of �k in Nusselt number. The condition
for the step size to be an optimum is

@Jkþ1

@�k
¼ 0 ð34Þ

A perturbation in the functional can be determined by the method of steepest descent as

min� J
kð��NuÞk ¼ min�

Z tf

0

Z d

0

Z l

0

� ð��NuÞk � �kPk
� �

� Y
� 	2

�ðyÞ dx dy dt ð35Þ

where Pk is the descent direction. Linearizing the expression with a Taylor’s series
expansion, one can write

Jkþ1 ð��NuÞkþ1
� 	

¼

Z tf

0

Z d

0

Z l

0

�
�½ð��NuÞk � �k��ðPkÞ� � Y

	2
�ð yÞ dx dy dt ð36Þ
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Therefore

@Jkþ1

@�k
¼ 2

Z tf

0

Z d

0

Z l

0

��ð� � Y� �k��Þ �ð yÞ dx dy dt ð37Þ

Using Eq. (34), the following equation for the optimum step size can be derived:

�k ¼

R tf
0

R d
0

R l
0 ��ð� � Y Þ�ð yÞ dx dy dtR tf

0

R d
0

R l
0 ð��Þ

2 �ð yÞ dx dy dt
ð38Þ

4.5 Stopping Criterion

The inverse technique is iterative in nature, and iterations are to be stopped when a
suitable convergence criterion is satisfied. When the standard deviation in the measured
data is known, the convergence criterion in Nusselt number can be related to the scatter
in the temperature data. In the present study, the additional measurement approach of
Ozisik and Orlande [2] has been adopted as the stopping criterion. A new functional J1
is constructed with a few of the LCT images beyond the measurement time tf, with the
following definition:

J1 ¼

Z tfþM

tfþ1

Z d

0

Z l

0

ð� � Y Þ2�ð yÞ dx dy dt ð39Þ

Here, M is the number of additional LCT images considered in the convergence
criterion beyond time tf. The function � in Eq. (39) is determined by the latest
available Nusselt number distribution. Iterations continue for a monotonically
decreasing J1; thus the stopping criterion is

Jk1 > Jk�11 ð40Þ

The discussion in Sections 4.1–4.5 is a specific approach for the regularization of
the ill-posed problem generated by an inverse calculation. It is required for the
unambiguous determination of the optimum Nusselt number distribution from the
experiments.

4.6 Inverse Algorithm

The statement of the full inverse algorithm can be summarized as follows:

1. Solve stream function and vorticity equations for the velocity field.
2. Provide an initial guess to the local Nusselt number distribution.
3. Solve the direct problem (Eqs. 1–9) and obtain the instantaneous plate

temperature distribution.
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4. Compute the functional (Eq. 11).
5. Solve the adjoint problem (Eqs. 13–21).
6. Compute the gradient of the functional (Eq. 24).
7. Compute the descent direction:

Pk ¼ �kPk�1 þ J0k ð41Þ

where for the first iteration �1¼ 0. For k>1

�k ¼
hJk � Jk�1jJki

kJk�1k
2

ð42Þ

8. Solve the sensitivity problem (Eqs. 25–33).
9. Compute the step size (Eq. 38).

10. Compute the updated local Nusselt number:

ð�NuÞkþ1 ¼ ð�NuÞk � �kPk ð43Þ

11. Go to step 3, if the stopping criterion (Eq. 40) is not satisfied.

5 SEMI-INFINITE SOLID APPROXIMATION

For comparison with the inverse solution, an alternative approach has also been
pursued. It is based on temperature measurements in the bakelite sheet below
the heated aluminum plate. When the heaters are turned off, the aluminum plate
cools because of the flow above the surface. This process influences the thermal
gradients in the bakelite sheet. The thermocouples embedded in the bakelite sheet
sense this change as a function of time. The temperature measurements can be
related to the surface heat transfer coefficient. The mathematical model for heat
conduction in the bakelite sheet assumes that temperature changes occur in a direc-
tion normal to the flow direction; equivalently, the bakelite sheet is taken to be a
semi-infinite solid.

In view of the computational efficiency of the semi-infinite solid approximation, it
has been discussed by various authors [11–13]. The procedure presented here has
been adopted from [12,13]. The selection of the bakelite and its thickness satisfy the
criterion that the minimum thickness of the bakelite sheet should be greater than
4
ffiffiffiffiffi
�t
p

, where � is the thermal diffusivity and t is the total measurement time [9]. This
condition was further cross-checked against direct thermocouple measurement inside
the bakelite plate but located away from the surface.

6 STEADY STATE CALCULATIONS

The steady state solution for Nusselt number can be independently found without
reference to experimental data. These results have been used in the present work for
comparison against the predictions of the inverse technique.
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For an isothermal surface, the direct solution of the temperature distribution in the
fluid medium is achieved by solving Eqs. (1)–(9), with the boundary condition:

y ¼ 0, � ¼ 1 ð44Þ

The local Nusselt number can be computed as:

Nu ¼ �
@�

@y

����
y¼0

ð45Þ

For a constant flux boundary condition, the wall boundary condition is

y ¼ 0,
@�

@y
¼ �1 ð46Þ

The local Nusselt number can be evaluated as:

Nu ¼
1

�

����
y¼0

ð47Þ

7 NUMERICAL SIMULATION

The intermediate steps in the inverse algorithm require the solution of partial
differential equations subjected to initial and boundary conditions. These equations
have been solved in the present study by appropriate numerical algorithms [14].
Specifically, the finite difference method of discretization has been used. Advection
terms have been treated by the QUICK scheme. Central differencing has been used
for the diffusion terms. Velocity field is solved by the stream function–vorticity
approach. Vorticity transport equation is solved through explicit time-marching,
whereas a Poisson equation for stream function is solved at every time step. Energy,
adjoint and sensitivity equations are solved in a fully implicit manner. The time step
for explicit time-marching is taken to be the smaller of the minimum of the grid
Courant number and the grid Fourier number. For implicit time-marching, the
time step is restricted to be less than ten times the explicit time step. A Compaq
Pentium-4 PC with 512 MB SDRAM and a LINUX operating system has been used
for computation.

The grid independence test has been carried out for three different grid sizes namely,
151� 41, 251� 71 and 351� 91, at the highest Reynolds number of the present study.
Based on this comparison, a 251� 71 grid has been chosen for presenting the results.
The grid is kept denser near the heated surface, and near the rib. The grid size increases
in a geometric progression in the downstream direction. A grid independence test in
terms of the local Nusselt number distribution is shown in Fig. 4.

The computer codes have been extensively validated against published numerical
results (Figs. 5 and 6). The fluid flow code has been compared with the published
numerical solution for laminar flow over a backward facing step [15]. The Reynolds
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number in the simulation is 800 based on the channel height. The backward facing step
occupies half of the channel height. The profiles have been compared at streamwise
locations of x¼ 7 and x¼ 15 in Fig. 5. The comparison is seen to be quite good.

The energy equation solver has been compared with the numerical solution of
flow past a heat generating obstacle [16]. Three different Reynolds numbers have
been studied, namely 100, 200 and 300. The channel height has been taken to be the
characteristic dimension. The channel walls are insulated and heat transfer over the
obstacle surface to the fluid has been computed. The comparison shown in Fig. 6
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FIGURE 4 Grid independence test for the two-dimensional flow and energy equation solvers in terms of the
local Nusselt number distribution.

v Velocity

-0.02 -0.01 0

∂u/∂x

-0.05 0 0.05 0.1

Vorticity

-6 -3 0 3

u Velocity

Y
 C

o
o

rd
in

at
e,

 y

0 0.4 0.8 1.2
-0.5

0

0.5

Gartling (1990), x=7

Gartling (1990), x=15

Present Solution

FIGURE 5 Validation of the two-dimensional flow solver for flow over a backward facing step with
Gartling [15], at Re¼ 800.
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reveals that local peaks in Nusselt number have been captured along with the overall
trend.

8 RESULTS AND DISCUSSION

The local Nusselt number variations for flow over a flat and a ribbed surface are
presented in this section. Nusselt number values quoted in this study are based on
the rib height. Issues such as the length of the signal in the transient experiment
and the effect of noise in the measured data are discussed. Reynolds numbers of 160
and 260, based on the rib height, are considered. For the flat surface, the air velocity
that prevailed in the wind tunnel at the respective Reynolds numbers of the rib
experiment was retained. For comparison, the Nusselt number distribution from
a fully numerical calculation on a fine grid has been included. To estimate uncertainties
in the data inversion procedure, constant temperature and constant flux boundary
conditions have been considered. As discussed in Section 3, the aluminium plate is
practically isothermal when the transient cooling experiment is initiated.

Figure 7 shows the performance of the inverse algorithm and the semi-infinite solid
solution for flow over a flat surface. The limiting Nusselt number distributions for
a constant wall temperature and a constant wall flux are also shown. The prediction
of Nusselt number from the inverse technique is very close to that from the steady
state calculation with an isothermal boundary condition. It is consistent with the initial
condition of the test plate, before the transient experiment is commenced by turning the
heater off. In this respect, the inverse technique converges to the initial steady state
condition prevailing in the test section, and not the transient cooling of the plate.
In contrast, the prediction of the semi-infinite solid approximation varies with the
duration of the transient experiment. For this reason, a sensitivity study with respect
to a signal length of upto 90 s has been carried out. For a signal length of
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FIGURE 6 Validation of the two-dimensional thermal energy equation solver against Leung et al. [16] for
flow past a heated block mounted on a flat surface.
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the first 20 s, the Nusselt number variation in Fig. 7 matches well the profile of the con-
stant temperature boundary condition. With increasing signal length (¼ 90 s), the
prediction departs from that for an isothermal plate. It is however, bounded by
the Nusselt number distribution for constant wall heat flux. This result is consistently
to be seen at both Reynolds numbers.

The above observation on the signal length is in agreement with the numerical
results of Butler and Baughn [17]. It can be explained as follows: The assumption
of a semi-infinite solid exposed to a constant Nusselt number environment during
the transient experiment breaks down for long signal lengths. This leads to a large devia-
tion from the steady state Nusselt number distribution for an isothermal surface.
In contrast, the inverse technique builds into the optimization scheme the physical
implication of plate cooling (through the adjoint equations) and uniquely predicts
the initial Nusselt number distribution. The long-signal predictions of the semi-infinite
solid model approach those for constant heat flux, because the measured thermocouple
data is then conditioned by the practically zero heat flux at the wall.

A survey of the literature shows that the semi-infinite solid approximation has been
examined closely by various authors. The time variation of the local Nusselt number
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FIGURE 7 Local Nusselt number as a function of dimensionless distance for convective heat transfer over
a flat surface.
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in the transient LCT experiment for a flat plate has been examined in [17]. The authors
have suggested the following correction to the transient solution to evaluate steady
constant surface temperature solution:

Nusteady state ¼ Nutransient T
�½ �
Rex

4:9=0:2

ð48Þ

where T� is the non-dimensional surface temperature during the transient cooling of
the plate, and Rex is the Reynolds number of the flow. For the present experiment,
the correction factor was within the range of 0.98–1, for a signal length upto 30 s.
This result explains the closeness of the semi-infinite solid prediction to that of the
isothermal surface, for short signals. It is related to the fact that for short signals,
the absolute change in surface temperature is quite small for the isothermal condition
to hold.

A second source of error in the semi-infinite solid approach is that it neglects heat
capacity effects in the LCT sheet as well as the heating element. In contrast, the inverse
convection technique works with the thermal field data in the fluid phase and is free of
this error. von Wolfersdorf et al. [18] have shown that this factor, along with three-
dimensional heat conduction effects in the supporting solid medium can over-predict
the local Nusselt number. This trend has also been observed consistently in the present
study.

Figures 8 and 9 show the streamline contours and Nusselt number variation for flow
past a rib at Reynolds numbers of 160 and 260, respectively. The solution obtained from
the inverse calculation is shown by solid circles. The Nusselt number from constant

Distance, x

L
o

ca
l N

u
ss

el
t 

N
u

m
b

er
, N

u

0 30
0

0.5

1

Semi Infinite Solid Solution (Signal Length = 20 s)

Semi Infinite Solid Solution (Signal Length = 90 s)

Steady State Constant Surface Temperature

Steady State Constant Surface Heat Flux

Inverse Estimation

Distance, x

Y
 C

o
o

rd
in

at
e,

 y

0 15

15

300

1

2

3

4
Re=160

FIGURE 8 Streamlines and local Nusselt number as a function of dimensionless distance for convective
heat transfer over a ribbed surface; Re¼ 160.
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temperature and constant flux boundary condition obtained from direct numerical
calculation are shown by solid and dashed lines, respectively. Open symbols have
been used to denote the data calculated from the semi-infinite solid approximation.
In the inverse calculation, the Nusselt number profile for a flat plate was used as the
initial guess for the rib configuration. The agreement between the inverse solution
and the pure numerical solution can be seen to be good. The peak in the Nusselt
number beyond the rib is seen to be located at the reattachment point of the separation
zone, at both the Reynolds numbers. The result from the semi-infinite solid approxima-
tion over-predicts the Nusselt number in the recirculation zone and the deviation is
higher for a greater signal length.

While comparing the inverse solution with the one-dimensional semi-infinite solid
solution, it is seen that the latter has a tendency to overestimate Nusselt number in
the vicinity of the rib. This can be explained via the restrictive assumption of one-
dimensionality of heat conduction in the bakelite sheet. Lin and Wang [11] have
explicitly shown in the context of LCT data that the tendency of overestimation is
severe in one-dimensional heat conduction models.

The issue of signal length is relevant to inverse calculations as well. As explained in
Section 4.1 (Eq. 10), the algorithm works with a subset of images collected for the entire
experiment. Some of the images are required for establishing the convergence of the
iterations. In addition, experimental data carry superimposed noise, and it is necessary
to assess the sensitivity of the inverse prediction to scatter in the measured data.
This study has been conducted as follows. An additional zero mean Gaussian noise
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FIGURE 9 Streamlines and local Nusselt number as a function of dimensionless distance for convective
heat transfer over a ribbed surface; Re¼ 260.
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is introduced in signals within the first 10 s out of the total of 20 s data. To introduce
noise, a zero mean Gaussian random number sequence is generated from a uniform
variate using the Box–Muller method [19]. The perturbed temperature is given by:

Yjperturbed ¼ Yjexact � �	 ð49Þ

where 	 is the standard deviation of the Gaussian distribution. � indicates the
confidence interval. For present analysis a 99% confidence interval is maintained by
setting �¼ 2.576.
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FIGURE 10 Sensitivity of the inverse solution to (a) the duration of the experiment and (b) noise in
LCT data.
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Figure 10(a) shows that the predictions of the inverse technique barely change
when the signal length increases from 20 to 30 s. This result is important from
a computational viewpoint, since a longer signal length indicates a greater amount of
CPU time for processing the LCT images. Figure 10(b) shows that the inverse technique
does not amplify noise for 	¼ 0.01, though noise persists at 	¼ 0.1. This result sets up
the guideline for the quality required in the LCT experiment.

9 CONCLUSIONS

An inverse convection technique for local Nusselt number estimation has been
presented. The input to the algorithm is a set of of surface temperature distributions
in the form of LCT data, during a transient cooling process of the wall from an initially
isothermal state. Two geometries, namely a flat plate and one with a surface-mounted
rib have been considered. For the Reynolds numbers studied, the flow fields in both the
geometries were found to be steady and two-dimensional. The following conclusions
have been arrived at in the present work:

1. The inverse technique is an accurate tool for extracting local variations in Nusselt
number from LCT data. On convergence, the estimated Nusselt distribution matches
the profile appropriate to the initial thermal boundary condition of the wall.

2. Within limits, the technique is insensitive to noise in the experimental data. It is also
robust with respect to the number of LCT images, and hence the signal length used
in the algorithm.

NOMENCLATURE

dr1 ¼ Rib height

h ¼ Convective heat transfer coefficient, W/mK

H ¼ Height of computational domain, m

J ¼ Functional

kf ¼ Thermal conductivity of the fluid, W/mK

ks ¼ Thermal conductivity of the solid, W/mK

l ¼ Dimensionless length of computational domain

l1 ¼ Distance of rib from the inflow plane

lr1 ¼ Rib width in the flow direction

lp ¼ Plate length

L ¼ Characteristic length, m

Nu ¼ Local Nusselt number, hdr1/kf
P ¼ Descent direction

Pe ¼ Peclet number based on incoming velocity and rib height

Pr ¼ Prandtl number

q00 ¼ Surface heat flux, W/m2

r ¼ Plate width

Re ¼ Reynolds number based on incoming velocity and rib height

s ¼ Distance measured over the rib surface
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t ¼ Dimensionless time scaled by dr1/U

tf ¼ Final time of estimation

T1 ¼ Fluid inlet temperature, �C

T0 ¼ Surface temperature, �C

Twi ¼ Initial surface temperature, �C

T ¼ Computed fluid temperature, �C

Tm ¼ Measured fluid temperature, �C

u ¼ Dimensionless fluid velocity in x direction scaled by U

U ¼ Fluid inlet velocity, m/s

v ¼ Dimensionless fluid velocity in y direction scaled by U

W ¼ Plate width, m

x ¼ Dimensionless streamwise distance along the plate scaled by the rib height

y ¼ Dimensionless cross streamwise distance scaled by the rib height

Y ¼ Measured fluid temperature in dimensionless form

z ¼ Dimensionless transverse distance scaled by the rib height

Greek Symbols

�f ¼ Thermal diffusivity of the fluid, m2/s

�s ¼ Thermal diffusivity of the solid, m2/s

� ¼ Step size in Nusselt number

� ¼ Dirac-delta function

� ¼ Weight for calculation of the descent direction

� ¼ Lagrange multiplier


 ¼ Kinematic viscosity of the fluid, m2/s

 ¼ Dimensionless stream function

� ¼ Fluid density, kg/m3

	 ¼ Standard deviation of noise in measured data

� ¼ Dimensionless fluid temperature computed with an assumed wall boundary

condition

�� ¼ Sensitivity function in temperature

! ¼ Dimensionless vorticity

|.| ¼ Absolute value

h:j:i ¼ Inner product

k:k ¼ Norm

Subscripts

w ¼ Value of variables at the wall

m ¼ Value of variables at measurement points

Superscripts

0 ¼ Gradient

k ¼ Iteration counter
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